Effective modeling and management are critical in wastewater treatment facilities since the aeration process accounts for 65–70% of the overall energy consumption. This study assesses control strategies specifically designed for different sizes of WWTP, analyzing their economic, environmental, and energy-related effects. Small WWTPs see advantages from the utilization of on/off and proportional–integral–derivative (PID) control methods, resulting in 10–25% energy savings and the reduction in dissolved oxygen (DO) levels by 5–30%. Cascade control and model predictive control (MPC) improve energy efficiency by 15–30% and stabilize DO levels by 15–35% in medium-sized WWTPs. Advanced WWTPs that utilize technologies such as MPC integrated with artificial intelligence (AI) and machine learning (ML) can decrease energy usage by 30–40% and enhance DO levels by 35–40%. Life cycle assessment (LCA) demonstrates substantial decreases in greenhouse gas (GHG) emissions: 5–20% for small, 10–25% for medium, and 30–35% for large WWTPs. These findings illustrate the feasibility and expandability of these tactics in both controlled laboratory environments and real-world situations, emphasizing the significance of customized methods for improving energy efficiency and sustainability in wastewater treatment. Subsequent investigations should prioritize integrating renewable energy sources and resolving obstacles in developing nations to enhance wastewater treatment plants’ energy efficiency and sustainability.