The weak gravitational lensing is a powerful tool in modern cosmology. To accurately measure the weak lensing signal, one has to control the systematic bias to a small level. One of the most difficult problems is how to correct the smearing effect of the Point Spread Function (PSF) on the shape of the galaxies. The chromaticity of PSF for a broad-band observation can lead to new subtle effects. Since the PSF is wavelength dependent and the spectrum energy distribution between stars and galaxies is different, the effective PSF measured from the star images will be different from that smears the galaxies. Such a bias is called colour bias. We estimate it in the optical bands of the Chinese Space Station Survey Telescope from simulated PSFs, and show the dependence on the colour and redshift of the galaxies. Moreover, due to the spatial variation of spectra over the galaxy image, there exists another higher-order bias, colour gradient bias. Our results show that both colour bias and colour gradient bias are generally below 0.1 percent in CSST. Only for small-size galaxies, one needs to be careful about the colour gradient bias in the weak lensing analysis using CSST data.