Abstract:The notion of L-fuzzy extended ideals is introduced in a Boolean ring, and their essential properties are investigated. We also build the relation between an L-fuzzy ideal and the class of its L-fuzzy extended ideals. By defining an operator " " between two arbitrary L-fuzzy ideals in terms of L-fuzzy extended ideals, the result that "the family of all L-fuzzy ideals in a Boolean ring is a complete Heyting algebra" is immediately obtained. Furthermore, the lattice structures of L-fuzzy extended ideals of an L-fuzzy ideal, L-fuzzy extended ideals relative to an L-fuzzy subset, L-fuzzy stable ideals relative to an L-fuzzy subset and their connections are studied in this paper.