Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Agricultural crop production practices are being developed for organic, sustainable, and environmentally friendly farming systems. Developing efficient and resourceful crop fertilizers is significantly important for future agriculture. Various biofertilizers, such as animal manures, composts, and vegetable byproducts, have been successfully applied in agriculture. Anaerobic digestate, organic matter obtained from animal or plant waste processing during anaerobic digestion into biomass, has become popular due to its versatility, multiple purposes, and facile application methods. Digestate has recently been widely used in agriculture to enrich the soil with nutrients and thus increase crop yields. Several studies have shown that anaerobic digestate is a valuable fertilizer that can be used as a biofertilizer in field and greenhouse horticulture. Also, research has been carried out on the use of digestate in hydroponic horticulture. This review presents the research results and discusses the possibilities of using anaerobic digestate in greenhouse horticulture. Its objective is to provide a comprehensive understanding of the application of digestate from various sources and its impact on the growth, progress, yield, and quality of greenhouse-grown vegetables.
Agricultural crop production practices are being developed for organic, sustainable, and environmentally friendly farming systems. Developing efficient and resourceful crop fertilizers is significantly important for future agriculture. Various biofertilizers, such as animal manures, composts, and vegetable byproducts, have been successfully applied in agriculture. Anaerobic digestate, organic matter obtained from animal or plant waste processing during anaerobic digestion into biomass, has become popular due to its versatility, multiple purposes, and facile application methods. Digestate has recently been widely used in agriculture to enrich the soil with nutrients and thus increase crop yields. Several studies have shown that anaerobic digestate is a valuable fertilizer that can be used as a biofertilizer in field and greenhouse horticulture. Also, research has been carried out on the use of digestate in hydroponic horticulture. This review presents the research results and discusses the possibilities of using anaerobic digestate in greenhouse horticulture. Its objective is to provide a comprehensive understanding of the application of digestate from various sources and its impact on the growth, progress, yield, and quality of greenhouse-grown vegetables.
In order to improve carrot quality and soil nutrition and reduce the environmental pollution caused by intensive carrot production, more comprehensive combined water–fertilizer management strategies are necessary. This study hypothesizes that optimal management of water and fertilizer can improve carrot yield and quality and reduce greenhouse gas emissions and soil nutrient residues. Thus, coordinated water–fertilizer management strategies were tested for carrot production on the North China Plain over two consecutive growing seasons. Four treatments were tested: local standard fertilization and irrigation practices (FNP); optimized irrigation and chemical nitrogen, phosphorus, and potassium fertilizer (OPT); OPT treatment with partial replacement of chemical fertilizer with peanut shell (PS); and OPT treatment with partial replacement of chemical fertilizer with mushroom residue (M). Compared to the FNP treatment, there were statistically significant increases in soluble sugars (12–27%) and free amino acids (14–26%), and decreases in the nitrate content (7–17%) of fleshy root in the OPT, PS, and M treatments. In autumn carrots, the OPT and M treatments decreased yield, whereas PS increased yield; spring carrot yield was significantly decreased in the OPT, PS, and M groups compared to the FNP group. There were no significant effects of the treatment group on carrot growth rates, nutrient accumulation, or nutrient distribution. However, the OPT, PS, and M treatments were associated with significantly increased partial productivity of phosphate fertilizer (233–363%), reduced residual levels of nitrate and available phosphorus in the top 80 cm of soil, and decreased greenhouse gas emissions by 8–18% compared to the FNP treatment. These results highlight the effectiveness of partial organic fertilizer substitution and integrated water–fertilizer management to produce high-quality carrots with minimal environmental damage.
Biogas slurry with rich nutrients could be applied as fertilizer to improve nitrogen absorption and soil structure. Arbuscular mycorrhizal fungi (AMF) are beneficial soil microorganisms that establish mutualistic relationships with the plant roots. The purpose of this study was to study the effects of AMF and biogas slurry treatment on hybrid Pennisetum growth, soil chemical properties, and soil microorganisms. The results revealed that the biomass yield of hybrid Pennisetum was significantly increased after the application of biogas slurry, and it reached the peak values when the biogas slurry dosage was 900 t/hm2, which were 13,216.67 kg/hm2 and 13,733.33 kg/hm2 in AMF− and AMF+ treatment groups, respectively. Moreover, biogas slurry treatment has a significant promoting effect on other agronomic traits related to biomass yield. As for soil chemical indicators, the contents of total nitrogen, nitrate nitrogen, ammonia nitrogen, and available phosphorus in the soil increased with the increase in biogas slurry application, while the soil organic matter was decreased. The addition of arbuscular mycorrhizal fungi significantly increased the species diversity of soil fungi with no biogas slurry application. Furthermore, when biogas slurry was applied, it had no significant effect on soil microbial diversity and composition, no matter the AMF+ or AMF− treatment. The research results can provide a reference for the long-term utilization of biogas slurry and it also can be used in the actual production of hybrid Pennisetum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.