Single-stranded DNA breaks, including simple nicks, are amongst the most common forms of DNA damage in cells. They can be readily repaired by ligation; however, if a nick occurs just ahead of an approaching replisome, the outcome is a ‘collapsed’ replication fork in which the nick is converted into a single-ended double-strand DNA break. Attention has largely focused on the processes by which this broken end is used to prime replication restart. We realized that in eukaryotic cells, where replication initiates from multiple replication origins, a second fork converging on the collapsed fork offers additional opportunities for repair, but also generates a substrate that can promote localized re-replication. We have modelled this with purified proteins in vitro and have found that there is, indeed, an additional hazard that eukaryotic replisomes face. We discuss how this problem might be mitigated.