2002
DOI: 10.1016/s0010-4485(01)00086-0
|View full text |Cite
|
Sign up to set email alerts
|

Tool selection for five-axis curvature matched machining

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
19
0
2

Year Published

2005
2005
2018
2018

Publication Types

Select...
4
4

Relationship

0
8

Authors

Journals

citations
Cited by 71 publications
(22 citation statements)
references
References 23 publications
0
19
0
2
Order By: Relevance
“…The presented approach could be combined with other techniques to minimize the scallop height such as curvature matched machining [13]. The quality of this result closely depends on the maximal distance between adjacent toolpaths, herein, adjacent composed circular shapes and should probably be compared to other toolpath generation schemes.…”
Section: Discussion Future Work and Concluding Remarksmentioning
confidence: 99%
See 2 more Smart Citations
“…The presented approach could be combined with other techniques to minimize the scallop height such as curvature matched machining [13]. The quality of this result closely depends on the maximal distance between adjacent toolpaths, herein, adjacent composed circular shapes and should probably be compared to other toolpath generation schemes.…”
Section: Discussion Future Work and Concluding Remarksmentioning
confidence: 99%
“…For example, the use of surface normals to orient the tool in the case of the impeller model, in Figure 1, would yield walls of varying thickness Better accessibility in complex environments might demand a tailored tool orientation field. Similarly, curvature matched machining [13] is another motivation to use an orientation field, other than the surface normals' field.…”
Section: Orienting the Toolmentioning
confidence: 99%
See 1 more Smart Citation
“…The published algorithms can be classified broadly into local and global methods (Fan and Ball 2008). In the local methods (Vickers and Quan 1989, Bedi et al 1997, Rao and Sarma 2000, Jensen et al 2002, Yoon et al 2002, only normal curvatures of C (or W i ) and S are considered to orient C. The main disadvantage of the local methods is that there could still be rear gouging, and consequently a secondary iterative gouge-check and correction algorithm has to be implemented (Gray et al 2005). The global methods overcome the disadvantage by using an area of S beneath C to determine the orientation (Warkentin et al 2000, Gray et al 2003, Hosseinkhani et al 2007, Fan and Ball 2008.…”
Section: Previous Workmentioning
confidence: 99%
“…部干涉,该方法具有较高的计算效率。DING 等 [4] 通过计算待加工曲面最大主曲率来确定无曲率干涉 的最大刀具直径。然而,文献 [3][4]没有考虑到碰撞 干涉对刀具尺寸的影响。为此,JENSEN 等 [5] 综合 考虑局部干涉和全局干涉的避免,针对环形刀提 出一种基于曲率匹配的刀具直径优化选择方法。 LI 等 [6] 提出一种针对给定的环形刀是否能完成精加 工整个曲面的判别方法,首先将加工曲面离散为特 征点集,考虑到机床运动轴极限、曲率干涉、后角 干涉以及全局干涉的避免,确定了单点处刀轴可行 空间,若待加工曲面上所有特征点处的刀轴可行空 间存在交集,则给定刀具能胜任整个曲面的加工, 但该方法计算量较大,且没有综合考虑刀具长度。 GLAESER 等 [7] 研究了三轴加工中避免局部干涉和 碰撞干涉的刀具选择方法, 包括刀具的设计原则等, 但不适用于五轴联动加工。YANG 等 [8] 通过一套路 径生成方法模拟加工过程,进行三轴加工的干涉检 查和刀具优选,但所采用的优选方法实际是穷举比 较的过程。 就刀具长度而言,刀具长度对加工稳定性有着 至关重要的影响。较短的刀具长度不易产生振动、 刀具刚性好。但是,选用较短的刀具长度导致机床 主轴刀具加持部分与工件间容易发生碰撞干涉。为 此,JENSEN 等 [5] 通过检验碰撞干涉发生的位置, 确定了刀具最小有效长度。 MORIMOTO 等 [9] 通过规 划刀轴矢量来优化刀具长度,但干涉检测方法过于 保守,且不能用于多轴联动数控加工中。综上所述, 现有的刀具直径选择方法基本上都是通过研究目标 曲面与刀具形状之间的局部匹配关系来实现最大刀 具尺寸的选择,且很少综合考虑刀具长度,不适于 加工碰撞干涉大量存在的复杂曲面通道类零件。另 一方面,五轴数控加工中,机床自由度的增加使得 所选刀具半径大于待加工曲面的最小曲率半径成为 可能 [10] 。因此,通过计算待加工曲面曲率实现最大 刀具尺寸选择的方法 [3][4][5][6] 具有一定的局限性。实际 上,刀具选择主要考虑到局部干涉和碰撞干涉的避 免,局部干涉可以通过研究目标曲面与刀具形状之 间的局部匹配关系予以避免 [11] 。而由于碰撞干涉发 生位置的不确定性以及计算的复杂性导致其不易进 行判断。 WANG 等 [12] 利用 C 空间法求解了给定切触 点处无碰撞干涉刀轴摆动范围。尹周平等 [13] 发展了 可视锥方法,可用于计算可行刀轴空间。LI 等 [14] …”
unclassified