“…The predictors of the tool wear mainly include the theoretically mechanistic models (Ren et al, 2015;Zhu and Zhang, 2019;Goodall et al, 2020), the neural network of machine learning (Salgado and Alonso, 2007;Drouillet et al, 2016;Marani et al, 2021), and the vision-based monitoring (Dutta et al, 2016;You et al, 2020), etc. The predictive source data of the tool wears for different RUL predictors are normally from the 3-phase AC power (Salgado and Alonso, 2007;Li et al, 2008;Drouillet et al, 2016;Marani et al, 2021), the tool cutting sounds (Salgado and Alonso, 2007;Yen et al, 2013;Ren et al, 2015;Ubhanyaratne et al, 2017;Gomes et al, 2021;Marani et al, 2021), the workpiece vibrations (Gomes et al, 2021), the tool cutting forces (Yang et al, 2019;Zhu and Zhang, 2019;Gao et al, 2021), and the images of tool edges and workpieces (Castejon et al, 2007;Dutta et al, 2016;You et al, 2020). The predictive sensing devices of the tool wears are generally used the power cells (Salgado and Alonso, 2007;Drouillet et al, 2016;Goodall et al, 2020;Marani et al, 2021), the microphones (Salgado and Alonso, 2007;Gomes et al, 2021), the accelerometers (Gomes et al, 2021), the dynamometers (Yang et al, 2019;Zhu and Zhang, 2019), the acoustic emissions (Yen et al, 2013;Ren et al, 2015), and the camera sensors…”