It has been shown that the principle of maximum conformality (PMC) provides a systematic way to solve conventional renormalization scheme and scale ambiguities. The scale-fixed predictions for physical observables using the PMC are independent of the choice of renormalization scheme -- a key requirement of renormalization group invariance. In the paper, we derive new degeneracy relations based on the renormalization group equations that involve both the usual $\beta$-function and the quark mass anomalous dimension $\gamma_m$-function, respectively. These new degeneracy relations lead to an improved PMC scale-setting procedures, such that the correct magnitudes of the strong coupling constant and the $\overline{\rm MS}$-running quark mass can be fixed simultaneously. By using the improved PMC scale-setting procedures, the renormalization scale dependence of the $\overline{\rm MS}$-on-shell quark mass relation can be eliminated systematically. Consequently, the top-quark on-shell (or $\overline{\rm MS}$) mass can be determined without conventional renormalization scale ambiguity. Taking the top-quark $\overline{\rm MS}$ mass ${\overline m}_t({\overline m}_t)=162.5^{+2.1}_{-1.5}$ GeV as the input, we obtain $M_t\simeq 172.41^{+2.21}_{-1.57}$ GeV. Here the uncertainties are combined errors with those also from $\Delta \alpha_s(M_Z)$ and the approximate uncertainty stemming from the uncalculated five-loop terms predicted through the Pad'{e} approximation approach. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.