Objective
Mass exposure to alkylating agents such as nitrogen mustard (NM), whether accidental or intentional as during warfare, are known to cause systemic toxicity and severe blistering from cutaneous exposure. Thus, establishing the timing and appropriate dose of any potential drug designed to reverse or impede these toxicities is critical for wound repair and survival. Our previous data demonstrates that a single intraperitoneal injection of low-dose 25-hydroxyvitamin D3 (25(OH)D) given as early as 1 h following NM exposure is sufficient to rescue mice from pancytopenia and death. However, the duration of time following exposure where intervention is still effective as a countermeasure is unknown. In this study, we sought to assess the maximal time permissible following NM exposure where 25(OH)D still affords protection against NM-induced cutaneous injury. Additionally, we determined if a higher dose of 25(OH)D would be more efficacious at time interval where low dose 25(OH)D is no longer effective.
Methods
Low (5 ng) and high (50 ng) doses of 25(OH)D were administered intraperitoneally to mice following exposure to topical NM to assess wound resolution and survival. Mice were imaged and weighed daily to measure wound healing and to monitor systemic toxicity.
Results
We demonstrated that 5 ng 25(OH)D administered as early as 1 h and as late as 24 h post-NM exposure is able to achieve 100% recovery in mice. In contrast, intervention at and beyond 48 h of NM exposure failed to achieve full recovery and resulted in ≥60% death between days 6 and 12, demonstrating the critical nature of timely intervention with 25(OH)D at each respective dose. In order to circumvent the observed failure at >48 h exposure, we provided two consecutive doses of 5 ng or 50 ng of 25(OH)D at 48 h and 72 h post-NM exposure. Repeat dosing with 25(OH)D at 48 h and beyond led to marked improvement of lesion size with 75% recovery from mortality.
Conclusions
The opportunity to use 25(OH)D as a medical countermeasure for NM-induced toxicity has a finite of window for intervention. However, modifications such as repeat dosing can be an effective strategy to extend the intervention potential of 25(OH)D.