Introduction: Cancer cells drive the increase in vascular permeability mediating tumor cell extravasation and metastatic seeding. VIAN-c4551, an antiangiogenic peptide analog of vasoinhibin, inhibits the growth and vascularization of melanoma tumors in mice. Because VIAN-c4551 is a potent inhibitor of vascular permeability, we evaluated whether its antitumor action extended to a reduction in metastasis generation. Methods: Circulating levels of vascular endothelial growth factor (VEGF), lung vascular permeability, melanoma cell extravasation, and melanoma pulmonary nodules were assessed in C57BL/6J mice intravenously inoculated with murine melanoma B16-F10 cells after acute treatment with VIAN-c4551. VEGF levels, transendothelial electrical resistance, and transendothelial migration in cocultures of B16-F10 cells and endothelial cell monolayers supported the findings. Results: B16-F10 cells increased circulating VEGF levels and elevated lung vascular permeability 2 hours after inoculation. VIAN-c4551 prevented enhanced vascular permeability and reduced melanoma cell extravasation after 2 hours and the number and size of macroscopic and microscopic melanoma tumors in lungs after 17 days. In vitro, VIAN-c4551 suppressed the B16-F10 cell-induced and VEGF mediated increase in endothelial cell monolayer permeability and the transendothelial migration of B16-F10 cells. Conclusions: These findings support the inhibition of distant vascular permeability for the prevention of tumor metastasis and unveil the anti-vascular permeability factor VIAN-c4551 as a potential therapeutic drug able to prevent metastasis generation by lowering the extravasation of melanoma cells.