“…Based on the theory of algebraic topology (Munkres, 2018), persistent homology (Edelsbrunner et al, 2000;Edelsbrunner & Harer, 2010) extends the classical notion of homology, and can capture the topological structures (e.g., loops, connected components) of the input data in a robust (Cohen-Steiner et al, 2007) manner. It has already been combined with various deep learning methods including kernel machines (Reininghaus et al, 2015;Kusano et al, 2016;Carriere et al, 2017), convolutional neural networks (Hofer et al, 2017;Hu et al, 2019;Wang et al, 2020;Zheng et al, 2021), transformers (Zeng et al, 2021), connectivity loss (Chen et al, 2019;Hofer et al, 2019). and graph neural networks (Zhao et al, 2020;Yan et al, 2021;Zhao & Wang, 2019;Hofer et al, 2020;Carrière et al, 2020).…”