The prediction of landslide is a complex task but preparing the landslide susceptibility map through artificial intelligence approaches can reduce life loss and damages resulting from landslides. The purpose of this study is to evaluate and compare the landslide susceptibility mapping (LSM) using six machine learning models, including random forest (RF), deep boost (DB), stochastic gradient boosting (SGB), rotation forest (RoF), boosted regression tree (BRT), and logit boost (LB) in the mountainous regions of western India. The landslide inventory map consisting of 184 landslide locations has been divided into two groups for training (70% dataset) and validation (30% dataset) purposes. Fourteen landslide triggering factors including slope, topographical roughness index, road density, topographical wetness index, elevation, slope length, drainage density, stream power index, geomorphology, rainfall, soil, lithology, lineament density, and normalized difference vegetation index have been considered using the boruta approach for the LSM. The results reveal that the RF model has the highest precision in terms of AUC (0.88; 0.89), kappa (0.62; 0.50), accuracy (0.81; 0.77), and specificity (0.86; 0.86) both in the study region and secondary region, respectively. Hence, it can be concluded that the RF is an effective and promising technique as compared to DB, SGB, RoF, BRT, and LB for landslide susceptibility assessment in the research area as well as in regions having similar geo-environmental configuration.