The insular areas of the cerebral cortex in carnivores remain vaguely defined and fragmentarily characterized. We have examined the cortical microarchitecture and thalamic connections of the insular region in cats, as a part of a broader study aimed to clarify their subdivisions, functional affiliations, and eventual similarities with other mammals. We report that cortical areas, which resemble the insular fields of other mammals, are located in the cat's orbital gyrus and anterior rhinal sulcus. Our data suggest four such areas: (a) a "ventral agranular insular area" in the lower bank of the anterior rhinal sulcus, architectonically transitional between iso- and allocortex and sparsely connected to the thalamus, mainly with midline nuclei; (b) a "dorsal agranular insular area" in the upper bank of the anterior rhinal sulcus, linked to the mediodorsal, ventromedial, parafascicular and midline nuclei; (c) a "dysgranular insular area" in the anteroventral half of the orbital gyrus, characterized by its connections with gustatory and viscerosensory portions of the ventroposterior complex and with the ventrolateral nucleus; and (d) a "granular insular area", dorsocaudal in the orbital gyrus, which is chiefly bound to spinothalamic-recipient thalamic nuclei such as the posterior medial and the ventroposterior inferior. Three further fields are situated caudally to the insular areas. The anterior sylvian gyrus and dorsal lip of the pseudosylvian sulcus, which we designate "anterior sylvian area", is connected to the ventromedial, suprageniculate, and lateralis medialis nuclei. The fundus and ventral bank of the pseudosylvian sulcus, or "parainsular area", is associated with caudal portions of the medial geniculate complex. The rostral part of the ventral bank of the anterior ectosylvian sulcus, referred to as "ventral anterior ectosylvian area", is heavily interconnected with the lateral posterior-pulvinar complex and the ventromedial nucleus. Present results reveal that these areas interact with a wide array of sensory, motor, and limbic thalamic nuclei. In addition, these data provide a consistent basis for comparisons with cortical fields in other mammals.