Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The Kitaev spin liquid realizes an emergent static $${{\mathbb{Z}}}_{2}$$ Z 2 gauge field with vison excitations coupled to Majorana fermions. We consider Kitaev models stacked on top of each other, weakly coupled by Heisenberg interaction ∝ J⊥. This inter-layer coupling breaks the integrability of the model and makes the gauge fields dynamic. Conservation laws and topology keep single visons immobile. However, an inter-layer vison pairs can hop with a hopping amplitude linear in J⊥ confined to the layer, but their motion is strongly influenced by the type of stacking. For AA stacking, an interlayer pair has a two-dimensional motion but for AB or ABC stacking, sheet conservation laws restrict its motion to a one-dimensional channel within the plane. For all stacking types, an intra-layer vison-pair is constrained to move out-of-plane only. Depending on the anisotropy of the Kitaev couplings Kx, Ky, Kz, the intra-layer vison pairs can display either coherent tunnelling or purely incoherent hopping. When a magnetic field opens a gap for Majorana fermions, there exist two types of intra-layer vison pairs - a bosonic and a fermionic one. Only the bosonic pair obtains a hopping rate linear in J⊥. We use our results to identify the leading instabilities of the spin liquid phase induced by the inter-layer coupling.
The Kitaev spin liquid realizes an emergent static $${{\mathbb{Z}}}_{2}$$ Z 2 gauge field with vison excitations coupled to Majorana fermions. We consider Kitaev models stacked on top of each other, weakly coupled by Heisenberg interaction ∝ J⊥. This inter-layer coupling breaks the integrability of the model and makes the gauge fields dynamic. Conservation laws and topology keep single visons immobile. However, an inter-layer vison pairs can hop with a hopping amplitude linear in J⊥ confined to the layer, but their motion is strongly influenced by the type of stacking. For AA stacking, an interlayer pair has a two-dimensional motion but for AB or ABC stacking, sheet conservation laws restrict its motion to a one-dimensional channel within the plane. For all stacking types, an intra-layer vison-pair is constrained to move out-of-plane only. Depending on the anisotropy of the Kitaev couplings Kx, Ky, Kz, the intra-layer vison pairs can display either coherent tunnelling or purely incoherent hopping. When a magnetic field opens a gap for Majorana fermions, there exist two types of intra-layer vison pairs - a bosonic and a fermionic one. Only the bosonic pair obtains a hopping rate linear in J⊥. We use our results to identify the leading instabilities of the spin liquid phase induced by the inter-layer coupling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.