The tunneling behavior of fermions with half-integral spin from a higher dimensional charged anti-de Sitter (AdS) black hole in de Rham, Gabadadze and Tolley (dRGT) massive gravity is investigated via a modified Hamilton-Jacobi equation. The results demonstrate that the modified thermodynamic quantities not only are related to the properties of the higher dimensional charged AdS black hole in dRGT massive gravity but also depend on the parameter β, the coupling constant σ and the mass of emitted particles m. In addition, the modified Hawking temperature is higher than the original temperature; hence, the effect of MDR can significantly enhance the evolution of the black hole. Besides, our results can be verified using the modified Stefan-Boltzmann law.