In this paper, I present Diatomic, an open-source Excel application that calculates molar thermodynamic properties for diatomic ideal gases. This application is very easy to use and requires only a limited number of molecular constants, which are freely available online. Despite its simplicity, Diatomic provides methodologies and results that are usually unavailable in general quantum chemistry packages. This application uses the general formalism of statistical mechanics, enabling two models to describe the rotational structure and two models to describe the vibrational structure. In this work, Diatomic was used to calculate standard molar thermodynamic properties for a set of fifteen diatomic ideal gases. A special emphasis was placed on the analysis of four properties (standard molar enthalpy of formation, molar heat capacity at constant pressure, average molar thermal enthalpy, and standard molar entropy), which were compared with experimental values. A molecular interpretation for the molar heat capacity at constant pressure, as an interesting pedagogical application of Diatomic, was also explored in this paper.