2021
DOI: 10.9734/ajpas/2021/v13i230302
|View full text |Cite
|
Sign up to set email alerts
|

Topological Indices of Some New Graph Operations and Their Possible Applications

Abstract: A chemical graph theory is a fascinating branch of graph theory which has many applications related to chemistry. A topological index is a real number related to a graph, as its considered a structural invariant. It’s found that there is a strong correlation between the properties of chemical compounds and their topological indices. In this paper, we introduce some new graph operations for the first Zagreb index, second Zagreb index and forgotten index "F-index". Furthermore, it was found some possible applica… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
6
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(6 citation statements)
references
References 7 publications
0
6
0
Order By: Relevance
“…2) 𝐵 1 (𝐺, 𝑥, 𝑦) = 4𝑚 𝑥 4 𝑦 4 + (4𝑚 − 4) 𝑥 5 The K Banhatti polynomial sum connectivity 𝐷 1 (𝑚) is (as shown in Fig. 5) If 𝐺 is the DDD network, then 𝐵 2 𝑎 (𝐺, 𝑥, 𝑦) = 4𝑚 𝑥 (4) 𝑎 𝑦 (4) 𝑎 + (4𝑚 − 4) 𝑥 (6) 𝑎 𝑦 (9) 𝑎 + (28𝑚 − 16)𝑥 (8) 𝑎 𝑦 (16) 𝑎 + (9𝑚 2 − 13𝑚 + 24) 𝑥 (12) 𝑎 𝑦 (12) 𝑎 + (36𝑚 2 − 56𝑚 + 24)𝑥 (15) 𝑎 𝑦 (20) 𝑎 + (36𝑚 2 − 56𝑚 + 20)𝑥 (24) 𝑎 𝑦 (24) 𝑎 Proof: In aforesaid Table 1. +(36𝑚 2 − 56𝑚 + 20)𝑥 (4 * 6) 𝑎 𝑦 (4 * 6) 𝑎 = 4𝑚 𝑥 (4) 𝑎 𝑦 (4) 𝑎 + (4𝑚 − 4) 𝑥 (6) 𝑎 𝑦 (9) 𝑎 + (28𝑚 − 16)𝑥 (8) 𝑎 𝑦 (16) 𝑎 + (9𝑚 2 − 13𝑚 + 24) 𝑥 (12) 𝑎 𝑦 (12) 𝑎 + (36𝑚 2 − 56𝑚 + 24)𝑥 (15) 𝑎 𝑦 (20) 𝑎 + (36𝑚 2 − 56𝑚 + 20)𝑥 (24) 𝑎 𝑦 (24) 𝑎 The following are the results of Theorem 2.…”
Section: Resultsmentioning
confidence: 99%
See 4 more Smart Citations
“…2) 𝐵 1 (𝐺, 𝑥, 𝑦) = 4𝑚 𝑥 4 𝑦 4 + (4𝑚 − 4) 𝑥 5 The K Banhatti polynomial sum connectivity 𝐷 1 (𝑚) is (as shown in Fig. 5) If 𝐺 is the DDD network, then 𝐵 2 𝑎 (𝐺, 𝑥, 𝑦) = 4𝑚 𝑥 (4) 𝑎 𝑦 (4) 𝑎 + (4𝑚 − 4) 𝑥 (6) 𝑎 𝑦 (9) 𝑎 + (28𝑚 − 16)𝑥 (8) 𝑎 𝑦 (16) 𝑎 + (9𝑚 2 − 13𝑚 + 24) 𝑥 (12) 𝑎 𝑦 (12) 𝑎 + (36𝑚 2 − 56𝑚 + 24)𝑥 (15) 𝑎 𝑦 (20) 𝑎 + (36𝑚 2 − 56𝑚 + 20)𝑥 (24) 𝑎 𝑦 (24) 𝑎 Proof: In aforesaid Table 1. +(36𝑚 2 − 56𝑚 + 20)𝑥 (4 * 6) 𝑎 𝑦 (4 * 6) 𝑎 = 4𝑚 𝑥 (4) 𝑎 𝑦 (4) 𝑎 + (4𝑚 − 4) 𝑥 (6) 𝑎 𝑦 (9) 𝑎 + (28𝑚 − 16)𝑥 (8) 𝑎 𝑦 (16) 𝑎 + (9𝑚 2 − 13𝑚 + 24) 𝑥 (12) 𝑎 𝑦 (12) 𝑎 + (36𝑚 2 − 56𝑚 + 24)𝑥 (15) 𝑎 𝑦 (20) 𝑎 + (36𝑚 2 − 56𝑚 + 20)𝑥 (24) 𝑎 𝑦 (24) 𝑎 The following are the results of Theorem 2.…”
Section: Resultsmentioning
confidence: 99%
“…The second K Banhatti polynomial 𝐷 1 (𝑚) is (as shown in Fig. 6) 𝐵 2 (𝐺, 𝑥, 𝑦) = 4𝑚 𝑥 4 𝑦 4 + (4𝑚 − 4) 𝑥 6 The second hyper K Banhatti polynomial 𝐷 1 (𝑚) is (as shown in Fig. 7) Proof: Using Table 1.…”
Section: Resultsmentioning
confidence: 99%
See 3 more Smart Citations