2019
DOI: 10.1002/mana.201800126
|View full text |Cite
|
Sign up to set email alerts
|

Topological properties of strongly monotone planar vector fields

Abstract: We consider strongly monotone continuous planar vector fields with a finite number of fixed points. The fixed points fall into three classes, attractors, repellers and saddles. Naturally, the relative positions of the fixed points must obey a set of restrictions imposed by monotonicity. The study of these restrictions is the main goal of the paper. With any given vector field, we associate a matrix describing the arrangement of the fixed points on the plane. We then use these matrices to formulate simple neces… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?