2023
DOI: 10.1088/1361-6560/acb197
|View full text |Cite
|
Sign up to set email alerts
|

Topologically preserved registration of 3D CT images with deep networks

Abstract: Objective. Computed Tomography (CT) image registration makes fast and accurate imaging-based disease diagnosis possible. We aim to develop a framework which can perform accurate local registration of organs in 3D CT images while preserving the topology of transformation. Approach. In this framework, the Faster R-CNN method is first used to detect local areas containing organs from fixed and moving images whose results are then registered with a weakly supervised deep neural network. In this network, a novel 3D… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 50 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?