2021
DOI: 10.1017/fms.2021.64
|View full text |Cite|
|
Sign up to set email alerts
|

Topology of random -dimensional cubical complexes

Abstract: We study a natural model of a random $2$ -dimensional cubical complex which is a subcomplex of an n-dimensional cube, and where every possible square $2$ -face is included independently with probability p. Our main result exhibits a sharp threshold $p=1/2$ for homology vanishing as $n \to \infty $ . This is a $2$ -dimensional analogue of the Burtin and Erdoős–Spencer theorems … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 19 publications
0
0
0
Order By: Relevance