Electromechanical energy harvesters are used to extract energy from vibrations occurring in nature, transport, or industry. The main problem with such solutions is that their output voltage is completely dependent on the frequency and amplitude of the vibrations, which can make it difficult to power a specific device or charge a battery. Therefore, it is necessary to use solutions that meet these requirements. Most harvesters contain additional, specialized mechanical gearboxes, called mechanical rectifiers or power electronic interfaces, used to match the harvester’s output voltage to the load. Design work was carried out, the construction of the proposed energy harvester was described, and the operation principle of the author’s control algorithm was presented. The results of the research confirm the possibilities of influencing the output voltage and power of the harvester system independently of the frequency and excitation amplitude.