2022
DOI: 10.48550/arxiv.2205.03957
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Toric polar maps and characteristic classes

Abstract: Given a hypersurface in the complex projective space, we prove that the degree of its toric polar map is given by the signed topological Euler characteristic of a distinguished open set, namely the complement of the union of the hypersurface and the coordinate hyperplanes. In addition, we prove that if the hypersurface is in general position or is nondegenerate with respect to its Newton polytope, then the coefficients of the Chern-Schwartz-MacPherson class of the distinguished open set agree, up to sign, with… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 21 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?