The Columbia Non-neutral Torus ͑CNT͒ ͓T. S. Pedersen, J. P. Kremer, R. G. Lefrancois, Q. Marksteiner, N. Pomphrey, W. Reiersen, F. Dahlgreen, and X. Sarasola, Fusion Sci. Technol. 50, 372 ͑2006͔͒ is a stellarator used to study non-neutral plasmas confined on magnetic surfaces. A detailed experimental study of confinement of pure electron plasmas in CNT is described here. Electrons are introduced into the magnetic surfaces by placing a biased thermionic emitter on the magnetic axis. As reported previously, the insulated rods holding this and other emitter filaments contribute to the radial transport by charging up negatively and creating E ϫ B convective transport cells. A model for the rod-driven transport is presented and compared to the measured transport rates under a number of different conditions, finding good agreement. Neutrals also drive transport, and by varying the neutral pressure in the experiment, the effects of rod-driven and neutral-driven transport are separated. The neutral-driven electron loss rate scales linearly with neutral pressure. The neutral driven transport, presumably caused by electron-neutral collisions, is much greater than theoretical estimates for neoclassical diffusion in a classical stellarator with strong radial electric fields. In fact the confinement time is on the order of the electron-neutral collision time. Ion accumulation, electron attachment, and other effects are considered, but do not explain the observed transport rates.