“…The combination of low magnetocrystalline anisotropy of face-centered cubic (fcc) Ni and high magnetocrystalline anisotropy of hexagonal close-packed (hcp) Co, together with the high solubility of Co atoms in the crystalline lattice of Ni and vice versa for a wide range of relative concentrations [18], allows for the design of a material composition with tunable magnetic properties. The effective magnetic anisotropy energy is determined by the competition between the shape and magnetocrystalline anisotropies, together with the magnetostatic dipolar interactions among nanowires, being possible to tune the easy magnetization direction of the system between the longitudinal and perpendicular directions with respect to the nanowire axis [19,20]. Additionally, the study on multisegmented magnetic nanowires, comprising alternate single segments of soft and hard magnetic materials with well-controlled thicknesses and separated by non-magnetic interspacers, has recently drawn the interest of the scientific community due to the interesting magnetization reversal processes that take place in these nanostructured materials that may allow for the design of multistable magnetic systems that are capable of storing several bits of information in a single nanowire [21].…”