Four outer rotor surface-mounted permanent magnet synchronous machines (SMPSM), supplied by a seven-phase drive system, are proposed in this study, considering different q (number of stator slot per phase per pole ratio) to achieve a satisfying value of electromagnetic torque and Back-Electromotive Force (Back-EMF) with lower torque pulsation. Accordingly, the proposed configurations are investigated, and results are comparatively reported. Thus based on the results, the best-performing configuration, the candidate model, which presents the lowest torque pulsation with a desirable value of Tavg and Back-EMF is selected. In order to demonstrate the advantages of this candidate model, an optimization analysis is performed using 2D Finite Element Analysis (FEA). The resultant values of the variables are applied, designing three optimized models. Performance results of the optimized models demonstrate that TCog reduced noticeably and TRipple declined below 5%. The Artemis Drive-Cycles analysis results are also included for the best-optimized model, considering E-Motorcycle requirements and properties for urban, rural, and motorway driving conditions. Accordingly, in terms of In-Wheel application of the optimized machine, high torque/power density along with high values of PF and efficient performance are provided for E-Motorcycle application.