We study Hamiltonian R-actions on symplectic orbifolds [M/S], where R and S are tori. We prove an injectivity theorem and generalize Tolman and Weitsman's proof of the GKM theorem [TW] in this setting. The main example is the symplectic reduction X//S of a Hamiltonian T-manifold X by a subtorus S ⊂ T. This includes the class of symplectic toric orbifolds. We define the equivariant Chen-Ruan cohomology ring and use the above results to establish a combinatorial method of computing this equivariant Chen-Ruan cohomology in terms of orbifold fixed point data.