Starting with total potential energy variational principle, the governing equilibrium coupled equations for the torsional-warping static analysis of open thin-walled beams under various torsional and warping moments are derived. The formulation captures shear deformation effects due to warping. The exact closed form solutions for torsional rotation and warping deformation functions are then developed for the coupled system of two equations. The exact solutions are subsequently used to develop a family of shape functions which exactly satisfy the homogeneous form of the governing coupled equations. A super-convergent finite beam element is then formulated based on the exact shape functions. Key features of the beam element developed include its ability to (a) eliminate spatial discretization arising in commonly used finite elements, and (e) eliminate the need for time discretization. The results based on the present finite element solution are found to be in excellent agreement with those based on exact solution and ABAQUS finite beam element solution at a small fraction of the computational and modelling cost involved.