Antioxidants (AOX) in soils originate mainly from secondary plant metabolites and are pivotal in many redox processes in environment, maintaining soil quality. Still, little is known about the influence of land uses on their accumulation in soil. The aim of the paper was to determine the content of these redox-active compounds in the extracts of A horizons of abandoned fallows, arable and woodland soils. Total antioxidant capacity (TAC) of soils under various uses and vegetation was evaluated in different soil extracts using Folin-Ciocâlteu method. The contribution of humic acids to TAC was determined and antioxidant profiles estimated using the chromatographic GC–MS method. Forest soils exhibited the highest TAC (15.5 mg g−1) and AOX contents (4.34 mg g−1), which were positively correlated with soil organic carbon content. It was estimated that humic acids contribute to over 50% of TAC in soils. The main phenolics in woodland A horizons were isovanillic and p-hydroxybenzoic acid (p-HA), while esculetin and p-HA predominated in the abandoned fallows due to the prevalence of herbaceous vegetation. Cultivated soils were the most abundant in p-HA (56.42%). In the studied topsoils, there were considerable amounts of aliphatic organic matter, which role in redox processes should be further evaluated.