Adsorbents in the form of powders are commonly used to filtrate organic compounds in waters. However, this technique requires the separation of the solid phase from the solution after adsorption experiments. Here we propose the use of films as adsorbents. We synthesized polyaniline films by chemical oxidative polymerization of aniline on red ceramic brick. This film was tested to remove trimellitic, hemimellitic and pyromellitic acids as model molecules of the biodegradation of aquatic humic substances. We evaluated the effect of pH, contact time and initial concentration. Our results show that optimal adsorption conditions required 45 min of solid/liquid contact at pH 7 and an initial concentration of 20 mg/l. The maximum adsorption capacities for hemimellitic, trimellitic and pyromellitic acids are 154.83 for hemimellitic acid, 161.88 for trimellitic acid and 175.26 mg/g for pyromellitic acid. The adsorption efficiency of the polyaniline film decreased only by 13 % after four cycles. Overall, we conclude that polyaniline films are promising separable adsorbents compared to conventional adsorbents for removal of aromatic polycarboxylic acids from water.