Recent developments in the synthesis of hybrid organic–inorganic halide perovskite quantum dots (HP‐QDs) through compositional adjustments have highlighted their potential applications in the fields of photovoltaics and light sources due to their unique optoelectronic properties. However, traditional methods to fine‐tune their composition involve repetitive, labor‐intensive, and costly processes. Herein, the utilization of a continuous flow chemistry approach is developed, in combination with a Proportional‐Integral (PI) feedback control system as an effective method for producing on‐demand methylammonium lead bromoiodide (MAPbBrxI3‐x) HP‐QDs. The PI feedback control allows for real‐time optimization of the flow rates of halide precursor solutions (halide PSs), enabling the precise tuning of the emission wavelength of HP‐QDs. HP‐QDs having an emission wavelength of 550 and 650 nm are synthesized through a blue‐shifted and red‐shifted algorithm, respectively, from any arbitrary reaction condition within 400 s. The iterative process through the PI feedback control produces the target HP‐QDs with short rise time and low overshoot. The proposed automatic flow chemistry system integrated with a universal and accessible control algorithm of PI can generate the target HP‐QDs with high accuracy, stability, and robustness, demonstrating a significant advancement in constructing an autonomous flow chemistry synthetic system.