Fluorescence recovery after photobleaching and fluorescence correlation spectroscopy are the primary means for studying translational diffusion in biological systems. Both techniques, however, present numerous obstacles for measuring translational mobility in structures only slightly larger than optical resolution. We report a new method using through-prism total internal reflection fluorescence microscopy with continuous photobleaching (TIR-CP) to overcome these obstacles. Small structures, such as prokaryotic cells or isolated eukaryotic organelles, containing fluorescent molecules are adhered to a surface. This surface is continuously illuminated by an evanescent wave created by total internal reflection. The characteristic length describing the decay of the evanescent intensity with distance from the surface is smaller than the structures. The fluorescence decay rate resulting from continuous evanescent illumination is monitored as a function of the excitation intensity. The data at higher excitation intensities provide apparent translational diffusion coefficients for the fluorescent molecules within the structures because the decay results from two competing processes (the intrinsic photobleaching propensity and diffusion in the small structures). We present the theoretical basis for the technique and demonstrate its applicability by measuring the diffusion coefficient, 6.3 ± 1.1 µm2/sec, of green fluorescent protein (GFP) in Escherichia coli cells.