The traditional combination forecasting model has good forecasting effect, but it needs precise historical data. In fact, many random events are uncertain, and much of the data are imprecise; sometimes, historical data are lacking. We need to study combination forecasting problems by means of uncertainty theory. Uncertain least squares estimation is an important technique of uncertain statistics, an important way to deal with imprecise data, and one of the best methods to solve the unknown parameters of uncertain linear regression equations. On the basis of the traditional combination forecasting method and uncertain least squares estimation, this paper proposes two kinds of uncertain combination forecasting models, which are the unary uncertain linear combination forecasting model and the uncertain relative error combination forecasting model, respectively. We set up several piecewise linear regression models according to the data of different periods and, according to certain weights, These piecewise linear regression models are combined into a unary uncertain linear combination forecasting model with a better forecasting effect. The uncertain relative error combination forecasting model is a new forecasting model that combines the traditional relative error linear forecasting model and the uncertain least squares estimation. Compared with the traditional forecasting model, the model can better deal with the forecasting problem of imprecise data. We verify the feasibility of the uncertain combination forecasting model through a numerical example. According to the data analysis, compared with the existing model, the forecasting effect of the proposed model is better.