Background
In this review, we assess the state of Resuscitative Endovascular Occlusion of the Aorta (REBOA) today with respect to out-of-hospital (OOH) vs. inhospital (H) use in blunt and penetrating trauma, as well as discuss areas of promising research that may be key in further advancement of REBOA applications.
Methods
To analyze the trends in REBOA use, we conducted a review of the literature and identified articles with human or animal data that fit the respective inclusion and exclusion criteria. In separate tables, we compiled data extracted from selected articles in categories including injury type, zone and duration of REBOA, setting in which REBOA was performed, sample size, age, sex and outcome. Based on these tables as well as more detailed review of some key cases of REBOA usage, we assessed the current state of REBOA as well as coagulation and histological disturbances associated with its usage. All statistical tests were 2-sided using an alpha=0.05 for significance. Analysis was done using SAS 9.5 (Cary, NC). Tests for significance was done with a t-test for continuous data and a Chi Square Test for categorical data.
Results
In a total of 44 cases performed outside of a hospital in both military and civilian settings, the overall survival was found to be 88.6%, significantly higher than the 50.4% survival calculated from 1,807 cases of REBOA performed within a hospital (p<.0001). We observe from human data a propensity to use Zone I in penetrating trauma and Zone III in blunt injuries. We observe lower final metabolic markers in animal studies with shorter REBOA time and longer follow-up times.
Conclusions
Further research related to human use of REBOA must be focused on earlier initiation of REBOA after injury which may depend on development of rapid vascular access devices and techniques more so than on any new improvements in REBOA. Future animal studies should provide detailed multisystem organ assessment to accurately define organ injury and metabolic burden associated with REBOA application. Overall, animal studies must involve realistic models of injury with severe clinical scenarios approximating human trauma and exsanguination, especially with long-term follow-up after injury.