Oxide ion distribution, vacancy ordering and electrical conductivity has been examined in the Nb/Yb double substituted bismuth oxide based system Bi 3 Nb 1-x Yb x O 7-x , using X-ray and neutron powder diffraction, reverse Monte Carlo modelling of total neutron scattering data and a.c. impedance spectroscopy. Transference number measurements confirm the system to be predominantly ionically conducting above ca. 450°C. Niobium rich compositions show incommensurate ordering of the fluorite subcell, while increasing ytterbium content results in a commensurate fluorite, with fully disordered cation and anion sublattices. Oxide ion distribution shows both compositional and thermal dependencies. The latter is discussed with respect to its effect on the thermal variation of cubic lattice parameter. Substitution of bismuth by niobium and ytterbium in the cation sublattice of bismuth oxide leads to the creation of Frenkel interstitial oxide ions, which increase the tetrahedral vacancy concentration. The high vacancy concentration is confirmed in both Rietveld and RMC analyses of neutron data. Examination of vacancy ordering, in the x = 0.6 composition, indicates a favouring of <100> vacancy pair alignment.