The total synthesis of bistramide A and its 36(Z),39(S) and 36(Z),39(R) isomers shows that these compounds have different effects on cell division and apoptosis. The synthesis relies on a novel enol ether-forming reaction for the spiroketal fragment, a kinetic oxa-Michael cyclization reaction for the tetrahydropyran fragment, and an asymmetric crotonylation reaction for the amino acid fragment. Preliminary biological studies show a distinct pattern of influence of each of the three compounds on cell division, differentiation, and apoptosis in HL-60 cells, thus suggesting that these effects are independent activities of the natural product.