Fusarium avenaceum is an aggressive pathogen of pulse crops and a causal agent in root rot disease that negatively impacts Canadian agriculture. This study reports the results of a targeted metabolomics-based profiling of secondary metabolism in an 18-strain panel of Fusarium avenaceum cultured axenically in multiple media conditions, in addition to an in planta infection assay involving four strains inoculated on two pea cultivars. Multiple secondary metabolites with known roles as virulence factors were detected which have not been previously associated with F. avenaceum, including fungal decalin-containing diterpenoid pyrones (FDDPs), fusaoctaxins, sambutoxin and fusahexin, in addition to confirmation of previously reported secondary metabolites including enniatins, fusarins, chlamydosporols, JM-47 and others. Targeted genomic analysis of secondary metabolite biosynthetic gene clusters was used to confirm the presence/absence of the profiled secondary metabolites. The detection of secondary metabolites with diverse bioactivities is discussed in the context of virulence factor networks potentially coordinating the disruption of plant defenses during disease onset by this generalist plant pathogen.