ConspectusThe cell surface (or cell wall) of bacteria is coated with carbohydrate
(or glycan) structures that play a number of important roles. These
include providing structural integrity, serving as a permeability
barrier to extracellular compounds (e.g., drugs) and modulating the
immune system of the host. Of interest to this Account is the cell
wall structure of mycobacteria. There are a host of different mycobacterial
species, some of which cause human disease. The most well-known is Mycobacterium tuberculosis, the causative agent of tuberculosis.
The mycobacterial cell wall is characterized by the presence of unusual
carbohydrate structures that fulfill the roles described above. However,
in many cases, a molecular-level understanding of how mycobacterial
cell wall glycans mediate these processes is lacking.Inspired
by a seminar he heard as a postdoctoral fellow, the author
began his independent research program with a focus on the chemical
synthesis of mycobacterial glycans. The goals were not only to develop
synthetic approaches to these unique structures but also to provide
molecules that could be used to probe their biological function. Initial
work addressed the preparation of fragments of two key polysaccharides,
arabinogalactan and lipoarabinomannan, which contain large numbers
of sugar residues in the furanose (five-membered) ring form. At the
time these investigations began, there were few methods reported for
the synthesis of oligosaccharides containing furanose rings. Thus,
early in the program, a major area of interest was methodology development,
particularly for the preparation of 1,2-cis-furanosides.
To solve this challenge, a range of conformationally restricted donors
have been developed, both in the author’s group and others,
which provide 1,2-cis-furanosidic linkages with high
stereoselectivity.These investigations were followed by application
of the developed
methods to the synthesis of a range of target molecules containing
arabinofuranose and galactofuranose residues. These molecules have
now found application in biochemical, immunological, and structural
biology investigations, which have shed light on their biosynthesis
and how these motifs are recognized by both the innate and adaptive
immune systems.More recently, attention has been directed toward
the synthesis
of another class of immunologically active mycobacterial cell wall
glycans, the extractable glycolipids. In this case, efforts have been
primarily on phenolic glycolipids, and the compounds synthesized have
been used to evaluate their ability to modulate cytokine release.
Over the past 20 years, the use of chemical synthesis to provide increasingly
complex glycan structures has provided significant benefit to the
burgeoning field of mycobacterial glycobiology. Through the efforts
of groups from around the globe, access to these compounds is now
possible via relatively straightforward methods. As the pool of mycobacterial
glycans continues to grow, so too will our understanding of their
role in disease, which will undoubtedl...