As a continuation of our effort to establish reliable thermodynamic data for important industrial solvents, dimethoxymethane (CAS RN: 109-87-5), 1,2-dimethoxyethane (CAS RN: 110-71-4), 2-methoxyethanol (CAS RN: 109-86-4), and 2ethoxyethanol (CAS RN: 110-80-5) were studied. Vapor pressure was measured by ebulliometry for dimethoxymethane and by static method for 1,2-dimethoxyethane, 2-methoxyethanol, and 2ethoxyethanol. Heat capacities in the liquid phase of all four compounds were measured by Tian−Calvet calorimetry in the temperature interval (262−358) K. In the case of dimethoxymethane and 1,2-dimethoxyethane, this interval was shortened because of their volatility. The thermodynamic properties in the ideal gaseous state were calculated using the methods of statistical thermodynamics based on calculated fundamental vibrational frequencies and molecular structure data. Calculated ideal-gas heat capacities and experimental data on vapor pressures, liquid phase heat capacities, and vaporization enthalpies were treated simultaneously to obtain a consistent thermodynamic description.Comparisons with literature values are shown for all measured and derived properties. Furthermore, the developed recommended data were used to identify new molecular parameters for the studied solvents within the PC-SAFT (perturbed-chain statistical associating fluid theory) equation of state and to compare their performance with those published in earlier papers; improved performance of the new parameters was achieved.