The local geometry of a Riemannian symmetric space is described completely by the Riemannian metric and the Riemannian curvature tensor of the space. In the present article I describe how to compute these tensors for any Riemannian symmetric space from its Satake diagram, in a way that is suited for the use with computer algebra systems; an example implementation for Maple Version 10 can be found on http://satake.sourceforge.net. As an example application, the totally geodesic submanifolds of the Riemannian symmetric space SU(3)/SO(3) are classified.