2006
DOI: 10.1016/j.laa.2005.05.013
|View full text |Cite
|
Sign up to set email alerts
|

Totally nonpositive completions on partial matrices

Abstract: An n × n real matrix is said to be totally nonpositive if every minor is nonpositive. In this paper, we are interested in totally nonpositive completion problems, that is, does a partial totally nonpositive matrix have a totally nonpositive matrix completion? This problem has, in general, a negative answer. Therefore, we analyze the question: for which labeled graphs G does every partial totally nonpositive matrix, whose associated graph is G, have a totally nonpositive completion? Here we study the mentioned … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
0
0
3

Year Published

2010
2010
2013
2013

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 4 publications
0
0
0
3
Order By: Relevance
“…Estas matrices reciben el nombre de matrices parciales. (1,3), (1,4), (2,1), (2,2), (2,3), (3,2), (3,3), (3,4), (4,3), (4,4 …”
Section: Matrices Parcialesunclassified
See 2 more Smart Citations
“…Estas matrices reciben el nombre de matrices parciales. (1,3), (1,4), (2,1), (2,2), (2,3), (3,2), (3,3), (3,4), (4,3), (4,4 …”
Section: Matrices Parcialesunclassified
“…que el subgrafo inducido por el conjunto de vértices V 1 ∩ V 2 es el clique K p y que no existen aristas entre los vértices (1,4), (2,3), (2, 4)}) es 2-cordal.…”
Section: Grafo Asociado a Una Matriz Parcialunclassified
See 1 more Smart Citation