2020
DOI: 10.48550/arxiv.2007.01569
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Totally null sets and capacity in Dirichlet type spaces

Abstract: In the context of Dirichlet type spaces on the unit ball of C d , also known as Hardy-Sobolev or Besov-Sobolev spaces, we compare two notions of smallness for compact subsets of the unit sphere. We show that the functional analytic notion of being totally null agrees with the potential theoretic notion of having capacity zero. In particular, this applies to the classical Dirichlet space on the unit disc and logarithmic capacity. In combination with a peak interpolation result of Davidson and the second named a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?