We investigate the mechanisms of fluid transport driven by temperature gradients in nanochannels through molecular dynamics simulations. It is found that the fluid-wall interaction is critical in determining the flow direction. In channels of very low surface energy, where the fluid-wall binding energy ε fw is small, the fluid moves from high to low temperature and the flow is induced by a potential ratchet near the wall. In high surface energy channels, however, the fluid is pumped from low to high temperature and the pressure drop caused by the temperature gradient is the major driving force. In addition, as the fluid-wall interaction is strengthened, the flow flux assumes a maximum, where ε fw is close to the lower temperature T L of the channel and ε fw /kT L ≈ 1 is roughly satisfied.