2018
DOI: 10.1016/j.ijrmhm.2017.10.024
|View full text |Cite
|
Sign up to set email alerts
|

Toughening mechanisms of SiC-bonded CNT bulk nanocomposites prepared by spark plasma sintering

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2022
2022

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(1 citation statement)
references
References 37 publications
0
1
0
Order By: Relevance
“…In addition to silicates, several different inorganic solids have been added as reinforcements to biopolymer materials; for example, the distribution of sepiolite in natural rubber causes improvement in mechanical properties [27]. Tensile strength and elastic modulus of natural rubber are increased by the addition of single walled carbon nanotubes (SWCNTs) and SiC nanoparticles-based reinforcements, have become improved that those with just SWCNTs-based materials [28]. Multiwalled carbon nanotubes (MWCNTs) dispersion in natural rubber materials also represented a similar effect, for example, improved physical, mechanical, and chemical properties of biopolymer [29,30] as presented in Figure 3.…”
Section: Nanocomposites From Renewable Resourcesmentioning
confidence: 99%
“…In addition to silicates, several different inorganic solids have been added as reinforcements to biopolymer materials; for example, the distribution of sepiolite in natural rubber causes improvement in mechanical properties [27]. Tensile strength and elastic modulus of natural rubber are increased by the addition of single walled carbon nanotubes (SWCNTs) and SiC nanoparticles-based reinforcements, have become improved that those with just SWCNTs-based materials [28]. Multiwalled carbon nanotubes (MWCNTs) dispersion in natural rubber materials also represented a similar effect, for example, improved physical, mechanical, and chemical properties of biopolymer [29,30] as presented in Figure 3.…”
Section: Nanocomposites From Renewable Resourcesmentioning
confidence: 99%