To comply with the rapid development of big data in mobile services, an increasing number of websites have begun to provide users with recommendation decisions in various areas, like shopping, tourism, food, and medical treatment. However, there are still some challenges in the field of medical recommendation systems, such as the lack of personalized medical recommendations and the problem of data sparseness, which seriously restricts the effectiveness of such recommendations. In this paper, we propose a personalized medical recommendation method based on a convolutional neural network that integrates revised ratings and review text, called revised rating and review based on a convolutional neural network (RR&R-CNN). First, the review text is divided into user and doctor datasets, and BERT vectorized representations are performed on them. Moreover, the original rating features are revised by adding the sentiment analysis values of the review text. Then, the vectorized review text and the revised rating features are spliced together and input into the convolutional neural network to extract the deep nonlinear feature vectors of both users and doctors. Finally, we use a factorization machine for feature interaction. We conduct comparison experiments based on a Yelp dataset in the “Health & Medical” category. The experimental results confirm the conclusion that RR&R-CNN has a better effect compared to a traditional method.