With the depletion of fossil energy, offshore wind power has become an irreplaceable energy source for most countries in the world. In recent years, offshore wind power generation has presented the gradual development trend of larger capacity, taller towers, and longer blades. The more flexible towers and blades have led to the structural operational safety of the offshore wind turbine (OWT) receiving increasing worldwide attention. From this perspective, health monitoring systems and operational safety evaluation techniques of the offshore wind turbine structure, including the monitoring system category, data acquisition and transmission, feature information extraction and identification, safety evaluation and reliability analysis, and the intelligent operation and maintenance, were systematically investigated and summarized in this paper. Furthermore, a review of the current status, advantages, disadvantages, and the future development trend of existing systems and techniques was also carried out. Particularly, the offshore wind power industry will continue to develop into deep ocean areas in the next 30 years in China. Practical and reliable health monitoring systems and safety evaluation techniques are increasingly critical for offshore wind farms. Simultaneously, they have great significance for strengthening operation management, making efficient decisions, and reducing failure risks, and are also the key link in ensuring safe energy compositions and achieving energy development targets in China. The aims of this article are to inform more scholars and experts about the status of the health monitoring and safety evaluation of the offshore wind turbine structure, and to contribute toward improving the efficiency of the corresponding systems and techniques.