2023
DOI: 10.3390/s23125615
|View full text |Cite
|
Sign up to set email alerts
|

Toward Energy-Efficient Routing of Multiple AGVs with Multi-Agent Reinforcement Learning

Abstract: This paper presents a multi-agent reinforcement learning (MARL) algorithm to address the scheduling and routing problems of multiple automated guided vehicles (AGVs), with the goal of minimizing overall energy consumption. The proposed algorithm is developed based on the multi-agent deep deterministic policy gradient (MADDPG) algorithm, with modifications made to the action and state space to fit the setting of AGV activities. While previous studies overlooked the energy efficiency of AGVs, this paper develops… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 7 publications
references
References 45 publications
0
0
0
Order By: Relevance