Toward machine learning based decision support for pre‐grouting in hard rock
Ida Rongved,
Tom F. Hansen,
Georg H. Erharter
Abstract:Pre‐grouting in hard rock tunneling is crucial for mitigating water ingress, significantly affecting project time and cost. Predicting pre‐grouting requirements is challenging and relies heavily on the expertise of on‐site personnel for decision‐making. This paper explores using supervised machine learning (ML) to create a data‐driven pre‐grouting decision process, aiming to predict “grouting time” and “total grout take.” Tree‐based regression models were developed using data from a Norwegian railway project, … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.