“…The feature definition is based on the notion of eigenfaces or eigenlips which represent the eigenvectors of the training sets. An alternative to PCA, very common as well, is Discrete Cosine Transform (DCT) such as in (Duchnowski et al, 1995);(Prez et al, 2005); (Hong et al, 2006); (Lucey & Potamianos, 2006). Linear Discriminant Analysis (LDA), Maximum Likelihood Data Rotation (MLLT), Discrete Wavelet Transform, Discrete Walsh Transform (Potamianos et al, 1998) are other methods that fit in this class and were used for lip reading.…”