2019
DOI: 10.1101/829556
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Toward One-Shot Learning in Neuroscience-Inspired Deep Spiking Neural Networks

Abstract: Conventional deep neural networks capture essential information processing stages in perception. Deep neural networks often require very large volume of training examples, whereas children can learn concepts such as hand-written digits with few examples. The goal of this project is to develop a deep spiking neural network that can learn from few training trials. Using known neuronal mechanisms, a spiking neural network model is developed and trained to recognize hand-written digits with presenting one to four … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2022
2022

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 41 publications
0
0
0
Order By: Relevance