Regulatory toxicology seeks to ensure that exposures to chemicals encountered in the environment, in the workplace, or in products pose no significant hazards and produce no harm to humans or other organisms, i.e., that chemicals are used safely. The most practical and direct means of ensuring that hazards and harms are avoided is to identify the doses and conditions under which chemical toxicity does not occur so that chemical concentrations and exposures can be appropriately limited. Modern advancements in pharmacology and toxicology have revealed that the rates and mechanisms by which organisms absorb, distribute, metabolize and eliminate chemicals—i.e., the field of kinetics—often determine the doses and conditions under which hazard, and harm, are absent, i.e., the safe dose range. Since kinetics, like chemical hazard and toxicity, are extensive properties that depend on the amount of the chemical encountered, it is possible to identify the maximum dose under which organisms can efficiently metabolize and eliminate the chemicals to which they are exposed, a dose that has been referred to as the kinetic maximum dose, or KMD. This review explains the rationale that compels regulatory toxicology to embrace the advancements made possible by kinetics, why understanding the kinetic relationship between the blood level produced and the administered dose of a chemical is essential for identifying the safe dose range, and why dose-setting in regulatory toxicology studies should be informed by estimates of the KMD rather than rely on the flawed concept of maximum-tolerated toxic dose, or MTD.